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LINEAR CIRCUITS OVER GF (2)*

NOGA ALON*t, MAURICIO KARCHMER%, aND AVI WIGDERSONS§

Abstract. For n=2* let S be an n x n matrix whose rows and columns are indexed by GF (2)* and,
for i, je GF (2)%, S.; = (i ), the standard inner product. Size-depth trade-offs are investigated for computing
Sx with circuits using only linear operations. In particular, linear size circuits with depth bounded by the
inverse of an Ackerman function are constructed, and it is shown that depth two circuits require {}(n log n)
size. The lower bound applies to any Hadamard matrix.
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1. Introduction. Let F be a field, and A a fixed n x n matrix with entries in F.
There are no nontrivial lower bounds for computing the linear transformation Ax
where x€ F" is an input, even if the circuit uses only linear operations.

When F is GF (2), linear operations are not more than exclusive-or gates. Counting
arguments show that for a random matrix A, circuits of size }(n°/log n) are needed.
In fact, O(n®/logn) is an upper bound on the size needed for every matrix [B].
However, no explicit matrix A is known which requires superlinear size, even if the
depth is restricted to be O(log n). (Valiant [V] has given an algebraic condition on
matrices that would imply such a lower bound, but no matrix satisfying this condition
has been constructed.)

In this note we consider H, the Boolean Hadamard matrix, and investigate
size-depth trade-offs for computing Hx.

3. Definitions. A Boolean Hadamard matrix H is a matrix with entries in GF (2)
and such that every two rows have Hamming distance n/2. Note that a Boolean
Hadamard matrix can be constructed from a Hadamard matrix H' by H =}(J+H’)
where J is the matrix of all ones. For n=2* the Sylvester Boolean matrix, S, is one
whose rows and columns are indexed by GF (2)* and, for i, je GF (2)%, S, ={i, j), the
inner product of i and j. It is easy to show that S is a Boolean Hadamard matrix.

A circuit for y = Bx where B is an m x n Boolean matrix is a DAG with n input
nodes x,, " - -, x,, m output nodes y,,* -, ¥, and every noninput node computing
the sum mod 2 of its inputs. (There is no bound on the fanin or on the fanout.) The
size of the circuit is its number of edges. The depth is the length of the longest directed
input-output path. Let s(B) denote the size of the smallest circuit for Bx, and let
s, (B) be the smallest size when the depth of the circuit is restricted to d.

The following lemma is important in understanding size-depth trade-offs.

Lemma 2.1. Let A, B be any two Boolean matrices. Then:

(1) s(B)=s(B"), where BT is the transpose of B.

(2) s(AB)=s(A)+s(B) if A and B can be multiplied together.

(3) s(B)=s(B™), where B” is the matrix B with rows permuted according to m.
Furthermore, the same is true for depth restricted circuits where (2) is replaced by
Sdﬁ»dz(AB)§Sd.(A)+Sd:(B)-
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Proof. (1) Let € be a circuit for Bx with input nodes $ ={1I,, - - -, I} and output
nodes 0={0,, -, 0,}. Note that I, has an odd number of paths to O; if and only

if B;;=1. Hence, by switching the roles of . and € and reversing all edges in €, we
get a circuit for B x.

(2) Let €,(%y) be a circuit for Ax (Bx) with input nodes %, (#5) and output
nodes 0, (Oy). It is easy to see that the circuit obtained by identifying €, with g
computes ABx.

(3) Let € be a circuit for Bx with input nodes $ ={I,,---,I}. By permuting
according to 7 and redirecting the edges going out of ¢ we get a circuit for B™x.
The depth restricted claims can be proved similarly. O

3. Known results. The following results are known (see [B]):

THeoREM 3.1 [B]. For most n x n Boolean matrices B, s(B)=(n’/log n).

THEOREM 3.2 [B]. For every n x n Boolean matrix B, s,(B) = O(nz/log n).

FacT 3.1. For every nxn Boolean marrix B, 5,(B)=w(B), where w(B) is the
number of ones in B.

The only specific matrix that has been studied in some detail is the parallel prefix
matrix P, where P,; =1 if and only if i =j. We will first define some very slowly growing
functions as in [CFL]. Let A(0,j)=2j; A(i,1)=2; and A(L,j)=A(i—1,A(i,j—1)) be
the Ackerman function. Let a(n,d)=min {j: A(d, j)= n}. Furthermore, let a(n)=
min {j: A(j,j)= n}.

THEOREM 3.3 [CFL]. s,(P)= O(na(n,d)).

In particular, this theorem implies the following corollaries.

COROLLARY 3.1. s¢,,,(P)= O(na(n)).

CoroLLARY 3.2. 5,.,,(P)= O(n).

4. New results. We present the following results.

THEOREM 4.1. 5,,(S) = O(na(n, d)) where S is the Sylvester Boolean matrix.

In particular, S can be computed in linear size and a(n) depth. This seems different
from the behaviour of similar matrices (say FFT) over other fields which are conjectured
to have size Q(n log n) regardless of the depth.

Though we would dare to conjecture that the above bounds are the best possible,
we can only prove them for d =2, namely, Theorem 4.2.

THeOREM 4.2. If H is a Boolean Hadamard matrix, then s;(H)=Q(n log n).

As far as we know, this is the first nontrivial lower bound for these circuits, even
in the restricted case of depth two. Another interpretation of Theorem 4.2 has to do
with a nonmonotone version of the problem of covering a graph with complete bipartite
graphs. The monotone question was studied in connection to lower bounds on
monotone, depth-three formulae (Hansel, Krichevskii [S]). In the same vein, the
combinatorial question below relates to lower bounds on nonmonotone, depth-three
formulae. Let G = ([n], [n], E) be a bipartite graph.' Let  be a collection of complete
bipartite graphs A, x B,, where A,, B, [n]. We say that & covers G if (i,j)€ E if and
only if (i, j) appears in an odd number of graphs in J. Let [¥|=Y (|A,/+]|B]) and
define the cover number of G, B(G) as the minimum of [7], where % covers G.

A Boolean matrix B can be considered as the adjacency matrix of a bipartite
graph Gp. Given a depth-two circuit € for B, and a node v in the middle layer, we
can associate a complete bipartite graph A(v) x B(v) where A(v) (B(v)) is the set of

nodes with edges to (from) v. With this as a hint, the proof of the following fact is
left for the reader.

"[n]={1,--- n}
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Fact 4.1. s5,(B)=B(Gjg).

We thus get the following coroilary.

COROLLARY 4.1. B(Gs)=0(nlog n) where S is the Sylvester Boolean matrix.
It is an open problem to construct a graph G with B(G)=Q(n'"").

5. Upper bounds. We now prove Theorem 4.1. Recall that we are working over
GF (2). Let n =2* Then, by definition, S = DD, where D is the 2* x k matrix whose
rows are all the vectors in GF (2)*. By Lemma 2.1, we have that s(S)=s(D)+s(D") =
2s(D).

A Grey code is an ordering v,, - - -, v,x of GF(2)* such that w(v,®v,,,)=1 for
all i (i.e., the Hamming distance of every two consecutive vectors is one). Once again,
by Lemma 2.1 we can assume, without loss of generality, that the rows of D are
vy, ", U,k as above.

Letu,; =(0,0,---,0),and let u; = v,_, @ v; for 2= i=2" Let U be the matrix whose
rows are u,, - - -, u,x. Clearly, s(U)=o(U)=n—1. Furthermore, D = PU where P is
the parallel prefix matrix as defined in § 3. We thus get s(S)=2(s(P)+n—1) and, by
Theorem 3.3, 5,,(S)= O(na(n, d)).

6. Lower bounds. We give two different lower bounds for s,( H). The first is weaker
than Theorem 4.2, but uses only the combinatorial structure of Hadamard matrices.
The proof of Theorem 4.2 will use the algebraic structure of Hadamard matrices,
together with results of Valiant [V] and Alon and Maass [AM].

Let € be a circuit for H and let $ and O be the set of inputs and outputs of €,
respectively. Furthermore, let . be the set of nodes of ¥ in the middle layer. Without
loss of generality, we may assume that all edges of € are either in 4 X/ orin 4 x O.

The following combinatorial fact will be needed. A sunflower with k petals is a
set system {R, - -, R}, where R, = CU Z, and the Zs are pairwise disjoint. C is
called the center of the sunflower and the Z;’s are called the petals. The following
theorem is well known.

THeEOREM 6.1 (Erdds-Rado). Every family of r! k” sets each of which has cardinality
less than r contains a sunflower with k petals.

Now we prove the weak version of Theorem 4.2.

THEOREM 6.2. For any Hadamard matrix H, s,(H)={(n log n/loglog n).

Proof. Let E, be the set of edges of € in # X #, and let E, be the set of edges in
M X OG. Let m=clog n/loglog n, for some constant ¢ to be determined later. We will
show that if |E||= mn then |E,|= mn/2, proving the theorem.

Let S < # be the set of inputs with (out)degree at most 2m. Clearly, |S|= n/2. For
a vertex i€ S, let T, < ./ be its set of neighbours. The collection of T;’s for i€ S forms
a set system of many small sets. By the sunflower theorem, there exists RS S, |R|=2m
such that {T;|ie R} form a sunflower. Let C be the center of the sunflower and
{Z:|lie R} its petals. Let F, denote the edges of E, emanating from Z,. 0

CLaIm 6.1. For every i,je R, |F|+|F|=n/2.

The theorem follows from Claim 6.1 by pairing the elements of R into
{(iy,j0), - -, (im, jm)} arbitrarily so that

|E;

< mn
= 'iyR F‘\ - .ZR |Fil= 121 (|Ful+|F;,l)§7

Proof of claim. Let K < O be the set of outputs that depend on exactly one of the
inputs x; and x;. By the definition of H, |K|= n/2. For every element k € K, the number
of paths from i to k must have a different parity than the number of paths from j to
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k. But then, there must exist at least one edge from Z, U Z; to k. Since this is true for
every ke K, |F|+|F|=n/2. 0

Now we prove Theorem 4.2. S,(H)=Q(nlogn). For Sc ¢ and T< 0, let
L(S, T)< M be the nodes in . connected both to nodes in S and T Let Hg ; be the
|S|x|T| submatrix of H indexed by S and T. The following observation of Valiant
[V] is the key to our proof.

FacT 6.1. |L(S, T)| = rank (Hs 7).

Intuitively, this fact says that the information contained in linearly independent
values cannot be compressed. We will use the following theorem of Alon and Maass
[AM].

THEOREM 6.3. If for every S ¥ and T< O with |S|=|T|=n">*"* |L(S, T)|=
€ log n, then € has at least (n log n) edges.

Hence it will suffice to prove Claim 6.2.

CramM 6.2. Let |S|=|T|=n""?"*" then rank (Hs ;) = ¢ log n.

Proof. Assume this is not so. Then there are at most n° different columns in Hg
so that one appears at least n'/*** many times. Without loss of generality, assume that
this column has more ones than zeros. Then H contains a monochromatic submatrix
of size (n'*"*)x(n'/***/2), which contradicts the well-known fact [L] that every
monochromatic submatrix of H has area at most 4n. 0
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